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Abstract 

Two fast methods of superposing two sets of atomic 
coordinates by least-squares refinement are described 
and related to two earlier fast methods. A Newton 
method is applied to rotations of a 3 x 3 outer product 
matrix used previously by Ferro & Hermans [Acta 
Cryst. (1977), A33, 345-347] and by McLachlan [Acta 
Cryst. (1972), A28, 656-657]. Three of the methods 
work better if one molecule has its inertial matrix 
aligned with xyz. A Newton-Gauss method that 
rotates the coordinates can converge rapidly after a 
rough orientation using three strategic atoms. The 
average superposition takes about 0.003 s on a Cyber 
175 with the best method, rotations about the xyz 
axes in turn. Experience with reliability is reported 
for large residuals. 

Introduction 

This paper describes experience with several methods 
for calculating the rigid-body rotations that are 
needed for matching similar molecular structures. 
Two new methods are presented and compared with 
published methods. In applications to proteins there 
is a systematic search for a likeness between a frag- 
ment of structure anywhere in one protein, A, to any 
part of a second protein, B (Rao & Rossmann, 1973; 
Rossmann & Argos, 1976, 1977; Remington & 
Matthews, 1978; McLachlan, 1979). A typical search 
involves more than a million structure matches, so a 
fast method is essential. The frequency of matches 
that do not reach the global minimum for the least- 
squares search is also of concern for interpretation 
of supposed likenesses. 

Three of the methods under discussion here are, 
in principle, equivalent. Thus, aspects of the theory 

0108-7673/84/060708-05501.50 

given next are like that given by McLachlan (1972) 
and by Ferro & Hermans (1977). Performances of the 
associated algorithms are not equivalent and effort 
was directed to understanding why not. Running 
times were studied for a variety of conditions: magni- 
tude of the residuals, magnitude of the relative rota- 
tions, orientation of one of the coordinate sets, and 
use of several tricks to speed or ensure convergence. 
The theory set forth here was helpful in understanding 
what gave minimal running times. 

The problem and the Newton method 

Let ak, bk (k = 1 to N)  be the position vectors of two 
sets of N atoms from the molecular fragments A and 
B. Let Wk be a weight for each atom. We want to 
minimize the residual E, an inner product, 

1 w E=~Y'. k ( R a - b ) ' k ( R a - b ) k .  (1) 

Here the prime signifies a transpose so that a' is a 
row vector. If we were to interpret Wk as the strength 
of a linear spring joining the atoms numbered k 
(McLachlan, 1982), then E would have the interpre- 
tation of a potential energy. Such a system is static 
if the net force and torque on, say, A due to B 
vanishes. The vanishing force requires that the cen- 
troids of A and B coincide (McLachlan, 1972; 
Remington & Matthews, 1978) while the vanishing 
torque requires that the weighted vector cross product 
of the structures vanish: 

g----~ Wk(b k Xak)  = 0 .  (2) 

Thus it is reasonable that a unique orthogonal proper 
rotation matrix R with determinant +l exists (see 
McLachlan, 1979), which transforms a referred to the 
centroid as origin to r = Ra and minimizes the residual 
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E. The only exception can be compared to finding a 
pencil balanced on its point. 

The inner product (1) can be expanded 
(McLachlan, 1972; Ferro & Hermans, 1977). Using 
the invariance of the inner product a'a under rigid- 
body rotation one gives attention to the coordinate 
outer product sum U, where 

Uu=Y~ Wk(a,bj)k. (3) 

The outer product U has the simple transformation 
V =  R U, where 

Vo = E Wk(r, bj)k. (4) 

Only the trace of V is involved in changes of the 
residual E. Both the first and second (and higher) 
derivatives of E can be expressed in terms of V. Then 
one may choose between updating the coordinates 
through r =  Ra or updating the coordinate product 
through V = R U. The coordinate update requires 9 N  
multiplications. The update of the outer product U 
requires 27 multiplications, so that we gain speed if 
N exceeds three atoms, other matters of overhead 
being equal. If the final coordinates are to be rotated 
for some purpose such as display, then a net rotation 
matrix must also be updated, another 27 multiplica- 
tions. Then we gain speed for N greater than six 
atoms. 

The search for a rotation matrix R is necessarily a 
series of approximations. The residual E is far from 
a parabolic function unless the fragments are closer 
than about 0.1 rad from the final solution. In fact, on 
most great circles of revolution the behavior of the 
residual function E is crudely sinusoidal. Thus, the 
second derivative of E on half of such a circle is apt 
to be negative, rather than positive, along the direc- 
tion that the first derivative suggests is downward. In 
a Newton method we would estimate the step size to 
the solution from E' /E" ,  where the derivatives are 
evaluated along a great circle. The algorithm must 
resort to a restricted step method when E" is negative; 
a reasonable step is 0.8 rad along the downward direc- 
tion before evaluating a new gradient. The likelihood 
of finding a negative E" can be made small by using 
a routine that precedes the least-squares matching 
and that accepts a rotation of 180 or 90 ° about an 
axis x, y or z if the trace of U increases. These 
operations require no multiplications, just sign 
changes and row or column permutations. Alterna- 
tively, a rough match can be done for three strategic 
atoms, as discussed later. In a conjugate gradient 
(CG) method (McLachlan, 1982) or a quasi-Newton 
method (e.g. Fletcher, 1980), the evaluation of E" is 
normally done; it is the double inner product s 'Hs  
of the Hessian (second derivative) matrix H with the 
path vector s, and requires 12 multiplications. Atten- 
tion to the sign of E" with a Newton method greatly 
simplifies the logic of a line search and even permits 
the avoidance of a line search. I find that the shortest 

robust line search uses the current point and two new 
points, does a quadratic fit to the traces of U and 
interpolates for the maximum trace (minimum E).  

Missing the global minimum with the Newton 
method is increasingly likely both when the molecules 
become unlike and when the molecule has few atoms. 
For definiteness I shall call small residuals those that 
are less than the r.m.s, separation along a strand, 
about 1.5/~. I shall call large rotations those bigger 
than 1 rad. An occasional failure to find the global 
minimum owing to large residuals would have little 

• significance in a search for cases of small differences 
between structures. Only experience with widely 
varied molecules can reveal the frequency of failures 
when the fragment residuals become large. 

The search for the minimum of the residual E in 
a Newton method becomes a search for a zero of the 
gradient VE. In a Taylor series 

VE = g + H s + ~ ' T s + . . . ,  (5) 

we set the left side to zero and evaluate the right-hand 
side derivatives at the current position. The third- 
derivative tensor T and higher orders are ignored. 
The solution for the step s becomes 

Hs = - g .  (6) 

A large Hessian matrix often leads to handling of (6) 
by a CG method or a quasi-Newton method. But here 
the Hessian matrix is 3 x3. Reduction to upper 
triangular form and solution by substitution requires 
only 11 multiplications and six divisions. The compet- 
ing operation in the CG method is an update of the 
path direction, which requires three multiplications 
and one division, but the use of a relatively inexact 
path requires several additional steps. 

Let us define a rotation matrix by successive plane 
rotations 03 about the z axis, 02 about the new y axis, 
and 0~ about the final x axis (e.g. Remington & 
Matthews, 1978). Each positive rotation has the 
counter-clockwise sense of a polar angle when look- 
ing back along the named axis toward the origin. 
Defining the corresponding cos and sin values Ci and 
HHS,, we find a finite rotation matrix R has the form 

C2 C3 C2 S 3 - $2 [ 

R =-CIS3 -1 -S1S2C3  CIC3-1-SIS2S 3 SIC2 (7) 

SIS3-+-CIS2C 3 SIC3-[-CIS2S 3 CiC2l 

Performing the three partial derivatives of R and 
evaluating them at 0~ = 0, we find 

0 0 0 0 0 -1 [  

DIR= 0 0 1 , DER= 0 0 001 , 
0 -1  0 1 0 

0 1 0 

D 3 R = - 1  0 0 (8) 

0 0 0 
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Forming the three matrix products with U, we find 
the three traces of the derivatives of R U becomes the 
gradient 

gi = t r  ( DiR U) 

= ~ wk(a3b2-- a263, alb3 - a3bl, a2bi - atb2)k 

=)-'. Wk(b X a)k. (9) 

Proceeding similarly, the nine second partial deriva- 
tives of R are equally sparse when evaluated at 0i = 0 
and yield, for a Hessian matrix Hi, 

H~ = tr ( D~jR U) 

a2b2 + a3b3 - a t  b2 

= -Y~ Wk -atb2 aibt +a3b3 

-atb3 -a2b3 

- a l b  3 

-a2b 3 

albt +a2b2 k 

(10) 

On comparison with (8) we note that if v = tr (U)  we 
can construct - H t  from v8 o - U  o provided that we 
use only the upper triangle of U, then make H! 
symmetric. Testing of the normal equations 

--HtSl = g  (1 I) 

as described below revealed that the step vector s~ 
was usually about 10% wrong for random molecules, 
even for st < 0.1 rad. 

The problem lies in the asymmetric use of informa- 
tion in U. Thus far we have considered rotating A 
into B. Had we rotated B into A, an independent 
problem, we would have used the transpose matrix 
R'. The normal equations become 

- n2s2 = -g ,  (12) 

where H2 involves the lower triangle of U. The overall 
change in sign from s~ to s2 is simply the change in 
sense of the rotations. Not surprisingly, the second 
kind of step is no better than the first. An order of 
magnitude in, but not complete, improvement (unless 
one of the molecules has its principal moments of 
inertia aligned with the coordinate system) is the 
averaging of st and -s2, which yields 

H o : v~ o -½( U o + U#) (13) 

in agreement with McLachlan (1982; his T~j), who 
found an alternative algebraic derivation of (13). The 
present derivation is a reminder to use every symmetry 
in an optimization procedure. 

The improvement of the symmetrized Hessian can 
be understood by consideration of the first neglected 
term in the Taylor series (5). The Hessian to higher 
order is H + s ' t ( t T - 2 T ) / 4 .  The difference of the 
tensors is 27 terms, of which all but six survive; they 
are components of gi in (9) and become small near 
the solution. The six terms that subtract to zero 
involve the product a2b2, which becomes large near 

the solution in general; those terms caused the poor 
performance of Hi and H2. 

The advantage of aligning one of the fragments so 
that its off-diagonal inertial matrix elements vanish 
requires consideration of the second neglected term 
in the Taylor series (5). The Hessian should properly 
be modified by terms quadratic in the angles needed 
to step to the solution, where the difference terms in 
the gradient (9) would vanish. When the angles are 
sizeable but one of the fragments is aligned with the 
coordinates, the perturbations to the Hessian are 
decreased. Even so, I found it imperative to check 
• epeatedly whether the residual E could be decreased 
by flips of 180 or 90 ° during iterations of the Newton 
method. Such repeated flips were not needed by the 
CG method or the xyz rotations of Nyburg (1974) 
and Ferro & Hermans (1977). 

The usefulness of aligning a fragment for the 
method of xyz rotations arises because the xyz axes 
otherwise have no special significance for the prob- 
lem; they are not eigenvect . . . .  f :he inertial matrix 
Y w,,la)(alk, in the Dirac bracket notation. When frag- 
ment A is so aligned, its inertial matrix is diagonal. 
When residuals are small, the matching of B to A 
amounts to a procedure that diagonalizes Y. wk[b)(blk 
in addition to U =~, wkla)(bl~ In all the cases that 
posed difficulties of convergence I found that the 
determinant of U was negative, a circumstance never 
observed with N = 50 atoms but occurring with a 
frequency of a few percent with N = 5 and the 3 A 
residuals of Table 1. 

T r i c k s  

A rough match of two fragments using three widely 
spaced atoms can be arranged as follows. Translate 
one atom pair to the origin. Put a second atom pair 
on the x axis by two rotations of the coordinate 
systems. Put a third atom pair in the y = 0 plane. A 
more efficient version of this copies the six coordinate 
triples, performs the operations only on the copies, 
and loads a suitable rotation matrix for multiplica- 
tions on all the coordinates to be rotated, say, B. 
Schemes to select the three atoms include prior know- 
ledge that they are widely separated or the calculation 
of the magnitude of cross products of the vectors 
defined by the three atoms. A less elaborate rough 
match was used by Nyburg (1974). 

For the three special atoms I used the two atoms 
separated by the largest distance along one of the 
three original axes and that third atom having the 
largest cross product with those two. That procedure 
needs 6 ( N - 2 )  multiplications. Even shorter is the 
use in the cross-product search of only the other four 
extreme atoms found during the distance search. 

Alignment of A with xyz to adequate accuracy can 
be ensured in nine plane rotations. The rotation about 
each axis in turn is chosen to zero one of the off- 
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Table 1. Execution times per 250 matches o f  random 
helices with residuals o f  about 3 ~  

F o u r  m e t h o d s  were  u sed  fo r  N = 5 and  N = 50 a t o m s  pe r  molecu le .  
E a c h  m e t h o d  c o u l d  c h o o s e  to  use flips o f  180 ° o r  o f  b o t h  180 a n d  
90 °. T h r e e  m e t h o d s  c o u l d  elect  a l ine search  (LS). The molecu l e s  
were  p r e p a r e d  wi th  a l i g n m e n t  o f  f r a g m e n t  A squa re  wi th  xyz (SQ), 
r o u g h l y  wi th  ex t r eme  a t o m s  a l o n g  x ( R ) ,  o r  wi th  r a n d o m  or ien ta -  
t ion  ( N ) .  C o l u m n s  repea t  until  a new  en t ry  appea r s .  

T ime(s )  C o m m e n t s  M e t h o d  A t o m s  Al ign  Fl ip  LS 

xyz 5 SQ Both N 0.90 
180 0-85 

None 0-82 
50 Both 0.82 

180 0-82 
None 0.82 

N Both 1.50 
180 1-53 

None 1.5 I 

CG 5 SQ Both N 1.68 
180 1.49 

None 1.62 
50 Both i .53 

180 1.49 
None 1.69 

5 N Both 1.53 
180 1-51 

None 1.59 
50 Both 1-51 

180 1.53 
None ! -64 

Newton 5 SQ Both N i.00 2 misses 
Y 1-74 I x 

50 N 1-05 0x 
Y 1.69 0x 

5 N N 0.95 25x 
Y 2.77 7x 

50 N 1-02 I 1 x 
Y 1.67 4x 

Rotate 5 SQ Both N 3.14 7 slow 
coordinates Y 5.01 I slow 

None 5.46 l slow 
50 Both N 7.69 

Y 12-93 
None N 8.26 

Y 13-66 
5 R Both N 3-59 7 slow 

Y 5.08 1 slow 
50 N 8.03 

Y 12-99 
5 N N 3-42 l0 slow 

Y 5.14 I slow 
50 N 7.41 

Y 13.77 

The required rotation by 0 satisfies 

tan 203---- 2 Y~ (wxy)k/~  Wk(X2--y2)k. ( 1 5 )  

The numerator  and denominator  can be treated like 
sine and cosine components of a phasor in assigning 
the quadrant  for 203. Similar relations hold for each 
axis. Three cycles through the three axes ensure that 
the off-diagonal elements of the inertial matrix vanish 
for the molecular fragment. 

The xyz rotation method 

Nyburg (1974) noted that the plane rotation, say, 
about z that best matches the xy coordinates has a 
closed form; i.e. if 

Irl l c SlLal  16, 
r 2 - S  C a 2 

and 

T(03) = ~ Wk[(r~--bl) 2 +(r2-- bE) 2] 

= ~ Wk[(Cal + Sa2 - bl)2 + ( - S a l  + Ca2 - b2)2], 

(17) 
then the derivative of T vanishes for 

tan 03 = Y'. Wk(a:bl -- al b2)k/~ Wk(al bl + a:b2)k. (18) 

We recognize a cross product in the numerator  and 
a dot product  in the denominator,  so, as in the last 
section, the phase of 03 can be assigned to a quadrant.  
There is no need for concern about large rotations. 
Nyburg rotated coordinates as in (16), but Ferro & 
Hermans (1977) noted that the quantities in (18) are 
in the coordinate outer product sum U and rotated 
U. Table 1 shows that sign flips that avoid large 
rotations save some time, but the saving is not sig- 
nificant. Three iterations through the three axes will 
usually ensure 100 ixrad matching when the residuals 
are small and one of the fragments is squared up, 
just as the squaring up of that fragment converges in 
three tries in most cases. 

diagonal elements of the inertial matrix. The calcula- 
tion requires 6 N  multiplications to obtain the matrix 
elements and 4 N  multiplications per plane rotation, 
up to 90N multiplications for one of the two 
molecules. Alignment of A with N = 50 takes 0.013 s 
on the Cyber. However, the rotation of fragment A 
is done only once for many matches with frag- 
ments B. 

The coordinate alignment about z, say, minimizes 
the weighted distance to the plane of z and the rotated 
x axis: 

T(03) = E  W k ( C y - S x )  2. (14) 

The Newton-Gauss method 

I found a method that is rapidly convergent for small 
residuals and for any orientation after a rough match 
is arranged. However, it almost certainly requires 
rotating the coordinates, rather than updating the 
coordinate outer product U. This time we ask for a 
vector e that minimizes the estimated residual 

E = I E  Wkll(a-c x a ) -  (b +c xb)ll~. (19) 

Unlike the correct circular arcs that the atoms follow 
in the previous method, we here use tangent line 
segments c x a and c x b in estimating the residual. 
For brevity we introduce the vectors x = a +b  and 
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q = a -  h. The normal equations become 

H e  = ~., Wk(X ×q)k, (20) 

where the Hessian 

I X~+X] -x,x~ -x,x~ 
H=Ew,,  -x,x2 x~+x~ -x2x3 (21) 

--XIX3 --X2X3 X2 -i-X2 k 

is manifestly symmetric in the coordinates of the 
fragments. 

This new method, however, is not like each of the 
others reviewed here. Some of the terms in the Hessian 
do not occur in the outer product U, although some 
do. Expanding the vector cross product quickly shows 
that the term 

x × q = 2b × a (22)  

transforms under rotations like g in (9), which are 
off-diagonal terms in U. On the diagonal of (21 ) terms 
like 

x 2 + x 2 = 2(a2b 2 -k a3b3) + (a~ + b22 + a 2 + b~) (23) 

correspond to previous cross terms plus unchanging 
terms. But off the diagonal we find terms 

x l x 2 = ( a l b 2 + a 2 b l ) + ( a l a 2 + b l b 2 )  (24) 

that are in the outer product U plus other terms whose 
changing is complex unless we rotate the coordinates. 
I find that convergence is completely reliable with 
large residuals but strugglingly slow near the solution. 

It can be shown that the method of (19) is a small- 
angle Newton-Gauss treatment of (1), which ensures 
that the Hessian (21) is positive definite, unlike the 
indefinite Hessian of ( l l ) ,  (12), or the average of 
those equations. The Newton-Gauss approximation 
ignores the curvature of the paths taken by the atoms 
in rotating into a match. That also suppresses infor- 
mation and causes the slow convergence with large 
residuals, i.e. with a U having a negative determinant. 
In a Newton method starting with (1) one adds the 
second-order corrections and obtains (1 l) or (12). 
Thus, the simple-appearing rotation problem is a 
useful tutorial exercise for any introduction to 
numerical methods. 

T e s t i n g  the  a lgor i thms  

The 'random molecules' used for test purposes were 
based on a linear random walk and were of two types. 
'Random helices' used consecutive thirds of the walk 
for x coordinates of the atoms, then the y and z 

coordinates. The r.m.s, spatial separation of adjacent 
atoms was scaled to a constant value. The molecule 
B was generated by adding Gaussian noise of zero 
mean to each of the coordinates of fragment A. Then 
some rotation of B was added. 'Random pencils' used 
three consecutive numbers of the walk for x, y and 
z of an atom, and so on. The resultant high correla- 
tions between x, y and z left the 'pencil' aligned along 
a space diagonal passing through the origin. The latter 
type afforded the more severe test for the algorithms 
because one of the three real eigenvalues of the 
Hessian is very near to zero while the other two are 
almost coincident. The advantage of using computer- 
generated coordinate sets was that the magnitude of 
the residuals could be varied as desired, unlike the 
situation in the final application. 

The result of comparisons of various methods with 
rather unlike molecules is given in Table 1. The 
independent methods sometimes gave unequal 
residuals after apparently valid stops. The minimum 
residual was accepted as correct. Major conclusions 
are as follows. The xyz  rotations are fastest, simplest 
and completely reliable. The Newton method is as 
fast as the CG method, but not reliable at a few misses 
of the global minimum per thousand and rather more 
complex because a line search is imperative. The CG 
method is fully reliable but takes a bit more code and 
memory than xyz  rotations. It gains almost nothing 
from the tricks used by the other methods. The rota- 
tion of the entire molecule coordinate set puts the 
Newton-Gauss method at a disadvantage in general. 
It is more suited for special problems where small 
rotations suffice. Slow convergence means 30 iter- 
ations or more to reach 100 i~rad steps. The residuals 
were unchanging in the fourth decimal place during 
most of these iterations. 

Fortran listings are available from the author. This 
work was supported by NIH grant 30393 and by the 
Computer Center of the University of Arizona. 
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